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Chaotic Oscillations and Noise Transformations in a 
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We analyze the statistical behavior of signals in nonlinear circuits with delayed 
feedback in the presence of external Markovian noise. For the special class of 
circuits with intense phase mixing we develop an approach for the computation 
of the probability distributions and multitime correlation functions based on the 
random phase approximation. Both Gaussian and Kubo-Andersen models of 
external noise statistics are analyzed and the existence of the stationary 
(asymptotic) random process in the long-time limit is shown. We demonstrate 
that a nonlinear system with chaotic behavior becomes a noise amplifier with 
specific statistical transformation properties. 
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1. I N T R O D U C T I O N  

The routes  to chaos  and the general  laws of chaot ic  mo t ion  have been 
intensely invest igated in recent years bo th  theoret ica l ly  and exper imenta l ly  
with r emarkab le  achievements .  (1 5) I t  seems that  one of the mos t  interest ing 
and significant quest ions in this field is the p rob l e m of noise influence on 
chaot ic  m o t i o n  (see refs. 6-11 and the references in refs. 4 and  5). Firs t ,  this 
is because r a n d o m  f luctuat ions  can erode the fine s t ructure  of the chaot ic  
m o t i o n  and  chaot ic  a t t rac tors .  (9'1~ F r o m  the stat is t ical  po in t  of view we 
mus t  deal  with the more  general  p rob lem of f luctuat ion t rans format ions  in 
non l inea r  systems. 

In  the present  pape r  we consider  a s imple theoret ica l  model  of a circuit  
with a non l inea r  e lement  and  de layed feedback as shown in Fig. 1. Let  
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General scheme of the nonlinear circuit. 

X - ] X I  e i~ be a slowly varying complex amplitude of a signal in this circuit. 
We assume that: 

(i) The transformation in the nonlinear element (NLE) consists in 
the phase change r  [we restrict our consideration to the 
simple case 0(IXI) = 2 Ixl 2k + 0o, k = 1, 2, 3,...] and the dissipation (energy 
loss )  IXI --, ~c IXI, K < 1. 

(ii) The signal trips from the NLE through the delay line (DL) and 
then comes to the summation device Z, where it interferes with the external 
signal (ES). 

(iii) The average value of the ES is fixed (and equal to units after 
renormalization). 

(iv) ~(t) is the noise component of the external signal (NCES), 
(~( t ) )  = 0  (the brackets ( . . - )  mean the statistical average). 

As a result, we have the equation of motion 

J((t)=~(t)+ l +xX(t-- Td)exp[i2 [X(t-- Ta)12k + iOo] (1.1) 

where Td is the delay time (the round-trip time for the feedback loop); 
is the dissipation factor. Further, we will use the discrete time version of 
Eq. (1.1) (the evolutionary map): 

XN+I=~Nq-F(XN)=-~N+I+KXNexp(i,~ [Xxl2k-}-iO0) (1.2) 

where XN=X(to+NTd) and ~N=~[to+(N+l)Ta], O<~to<Td. For 
instance, Eqs. (1.1) and (1.2) describe some nonlinear electrical circuits and 
also the dynamic processes in the optical ring cavity containing the non- 
linear medium (adiabatically) driven by the radiation ~z ~41 (Ikeda model). 

In this paper we focus on the case 2 >> 1 (intense phase mixing) and 
develop the statistical treatment for the dynamic behavior. We describe in 
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Section 2 the case Td >> rc and in Section 3 the case Ta ~ %, where rc is the 
correlation time of the external noise. In Section 3 we also prove the 
existence of the asymptotic stochastic process in the long-time limit. 
Finally, in Section 4 we derive the simple approximate formulas for the 
maximal 'Lyapunov exponent. 

2. STATISTICAL THEORY FOR Td~tZ~T c 

In this section we develop the statistical theory for the case Td>> 
rc >> z*, where T* is the relaxation (memory) time characterizing the rate of 
decay of excitations in the NLE. This assumption implies that the signals 
reaching the device S are statistically independent and ({N{/~)= 
( ~ u { * ) = O  for Nr Hence we can use the Kolmogorov-Chapman 
equation (~5) 

PN+I(X) =ff  dYdZPn(X-  Y) K(Y, Z) PN(Z) (2.1) 

Here PN ~ P(X[to + NTa]) and Pn(X) are the probability distributions for 
the signal amplitude (at given time t = to + NTd) and for the external noise 
Pn, respectively (we assume that the latter is a stationary random process 
and so Pn is time independent). Also, K(Y,Z)=a(2)(y-F(Z)), where 
a(Z~(x)=a(Re X)a(Im X) is the two-dimensional a-function and F was 
defined in (1.2). Setting 

PN(X) = f dU ON(U ) exp[i Re(XU*)] (2.2) 

we find the equation for the Fourier transformations 

ou+,(u) = f drOp(U) p(U, V) ON(V) (2.3) 

where 

p(U, V)=(2~)  2fdYexp[iRe(YV*)-iRe(F(Y) U*)] (2.4) 

and On(U) is the Fourier transformation of Pn(X). In particular, for the 
Gaussian noise, O n (U) = exp ( - R r u I 2/4), where R = ( ~ N ~ N ~, )" Substituting 
F from Eq. (1.2) to Eq. (2.4) and making use of formulae for the Hankel 
transformation, we have 

p(u, v)=~(u, v)+ ~p(u, v) (2.5) 

822/63/1-2-15 
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where 

p(ue ic~, ve i~) : (21rv) I e x p ( - i u  cos e) 6 ( v -  xu) 

Ap(ue i~, l)e il~) = (4re) -1 ~ W~(u, v) exp[iv(Oo - c~ + fl) - iu cos c~] 
vr 

and 

(2.6) 

(2.7) 

Wv(u, v) = f o  Jv(V x / s )  Jv(Ku x/-s) exp(iv;ts ~) ds (2.8) 

Using the standard stationary phase method, (16) we can obtain the 
asymptotic evaluation for the integral in Eq. (2.8) for 2 > 1 (u and v are 
constant). For  this purpose (and in accordance with the localization 
principle (16)) we use the decomposition for unity into smooth functions: 
1 = Ql(s) + Q2(s); Ql(s) =- 0 for s <<, 61, Ql(s) ---- 1 for s > a2, where 
0 < 5~ < 52. Multiplying the Bessel functions in (2.8) by unity in this form, 
we obtain the sum of two integrals. It follows from the asymptotic proper- 
ties of the Bessel functions that the integral containing Q~ is O(12]-~ 
Using the Erd61yi's lemma for the other integral, we obtain the principal 
term of the asymptotic expansion: 

Wv(u, 1))--k-l(v,)~) -(~+ l)/k (v') 2 ( ~ - ~ ) ~ F ( ~  -~-) 

[iTz(v + 1)q 
x exp L ~ j (2.9a) 

Note that for k = 1 

Wv(u, v)= (v)~) -1 f f+lJ v \2)~vJ exp - "v2+~2u2) (2.9b) 
t 4v,~o J 

and the evaluation (2.9a) follows from (2.9b), too. 
Now let us discuss the connection between the NCES properties and 

the useful approximation for the kernel Onp in Eq. (2.3). If 2>> 1, then 
quantities W~ are far from zero only for u, v >> 1. This means that the con- 
tribution to p containing Wv describes the fine structure of K (since K is 
the Fourier transform of p). Assuming On(ue ~) tends to zero rapidly 
enough as u ~ 0% one can see that the sum in Eq. (2.7) becomes negligible 
and Onp ~ OntS. It means qualitatively that the random fluctuations erode 
the fine structure of K (and therefore of PN)- 

In addition to the above consideration, we can present the supplement 
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for the case k =  1. Because of the asymptotic evaluation for the Bessel 
function, 

ij~(x)l <~ljv(jv, ,)l=C, v 1/3+0(v 1) 

(as v >> 1) is valid [here J~,l denotes the first (left) maximum; see ref. 20], 
we have v -1 IJu(x)t ~ v  -4/~ and Y,v~=l v -1 IJv(x)l < C2. As a result, using 
Eq. (2.9b), we have 

(2.10) 

where 

O'u+ ~(U)= f dVOn(U) Ap(U, V) ON(V) 

and C1, C2, C3 are constants. Assuming the convergence of the integrals in 
Eq. (2.10), we can see that the contribution ON+ 1(U) is negligible as 2 >> 1. 

The replacement p--+~ in the Eq. (2.3) is equivalent to the replace- 
ment K--+ _,~ in Eq. (2.1). Here 

R ( Y , Z ) = ' 5 ( 2 ) ( y - l - ~ c g e i n ) = ( 2 ~ l Y - 1 1 ) - l  ~ 5 ( I Y - l l - ~ c l g l )  (2.11) 

and q is a random variable with a uniform distribution in [0, 21t] (here 
and henceforth an overbar means the phase average). Actually after these 
replacements we have a random irreversible evolutionary map instead of a 
deterministic one. 

Supposing that the replacement p --+ f5 is valid, we shall distinguish two 
c a s e s :  

(i) the NCES intensity is small and so the statistical properties of a 
signal are independent of the NCES characteristics. 

(ii) The noise component of the signal is the superposition of the 
NCES and the noise created by the chaotic motion. 

First, we consider the case (i) and replace p by t~ in Eq. (2.3). The 
resultant approximate equation of motion reads 

ON+ ,(U) = e -i  Re UON(~ c ]U] ei~j (2.12) 

and the equivalent equation for distributions takes the form 

P~v+I(X)=~:-2pN( tr 1 I X -  11 e '0) (2.13) 
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Making the replacement (~N+I,ON-'+Ost in Eq.(2.12) we find the 
equation for the Fourier transformation of the stationary (invariant) 
distribution. We may write its solution in the form 

Ost(U)=(2rr)-l e ir~o~ [I Jo(]UI ~'/) (2.14) 
y= l  

It easy to show the convergence of the infinite product in Eq. (2.14) and the 
stability of this solution. Likewise, Ost=limN~oo ON, where the series 
01 ..... ON is created starting from any absolutely integrable function O1 
using Eq. (2.12). 

Note a peculiarity of the functional iteration process PN--+PN+I 
defined by Eq. (2.13). To this aim let us suppose 

PN(X) = (7['/s -1  f u ( I X -  112/~c2) (2.15) 

and get a new functional equation from Eq. (2.13): 

f~+ fu(H) dH 
fu+l(G)=(rt~2) 1 _ [ - - ( H - H - ) ( H - H + ) ]  1/2 (2.16) 

where H+ = (1 ___ x/-G)2/~c 2. Let f l ( H ) = 0  for H $  [0, hi].  We have, after N 

iterations, f u ( H ) -  0 for H6 [h'u, hu], where hu+ 1 = (1 + ~c ~ U )  2 and 

hu+ i = ( 1 -  x ~ u )  2. We then obtain after simple calculations 

hoo = lim h u = (1 - K ; )  - 2  
N~co 

, S(1 - 2~)2/(1 -- to)2, for ~<0.5  
h ~ =  lim hN= (2.17) 

N~oo ] 0, for 0.5~<K<1 

As a result, f~t(H)= limN~ oo fN(H) -  0 for H~  [ h ' ,  h ,  ], and we have for 
the corresponding two-dimensional distribution Pst(X)# 0 only within the 
ring domain 

(1 -- 21c)~c/(1 -- to) ~< I X -  11 ~< tc(1 - ~) for tr < 0.5 (2.18a) 

or the disk domain 

0~< I X -  II ~<~c(1-K) for 0.5 ~<~c< 1 (2.18b) 

In addition, the simple approximate formula for the stationary dis- 
tribution holds true for x ~ 1" 

Pst(O()={rC-2[4K6--(IX--ll2--K2)2]-l/2 for I iX-- 112-- ~c21 < 2~c 3 
0 for I I X -  112--~21/>2~ 3 

(2.19) 
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The typical numerically computed phase portraits for the two-dimen- 
sional noiseless map [Eq. (1.2) with ~N-- 0] are shown in Fig. 2 (note the 
presence of uncontrollable "noise" resulting from the truncation errors in 
digital calculations). In Fig. 3 we show the radial section profile of the rota- 
tionally symmetric distribution Pst = limN~ ~ PN found by the functional 
iterations PN ~ PN+~ with the use of Eq. (2.13). The crosses in Fig. 3 repre- 
sent data obtained by the numerical iterations XN--" XN+~. We can see 
that the randomlike distributions caused by the chaotic motion are in good 
agreement with the statistical treatment results (even if the noise is absent), 

Now we turn to the second case (ii). Replacing p --, fi in Eq. (2.12), we 
take On in the Gaussian form and obtain 

( RIvI2 
Ost(U)= (2~) -1 exp - / R e  U 4 / i - - - ~ ) ,  ] ~ Jo(lUI tr "/) (2.20) 

Let also tc ~ 1. To obtain the roughest approximation for Pst in this case 
one should retain only the first factor Jo(tC ru[) in the infinite product in 
Eq. (2.20). This gives 

Pst(X) ~ (rrR) -1 (1 - K 2) exp[ - (x2 + I X -  1[ 2)(1 - ~c2)/R] 

x I0(2~c(1 - K 2) I X -  11/R) (2.21) 

[here and in the next formula/~(-)  are the modified Bessel functions]. The 
more precise approximate expression [having the same accuracy as (2.19)] 
reads 

Pst(X) ~ (~R) 1 (1 --~c 2) exp[-(~c2 + I X -  1j2)(1 - K2)/R] 

x ~ (--1)s/~(2K3(1--K2)/R) 
s - -  - - o ~  

• - K 2) I X -  11 [(1 + 2~c) ~/2 + (1 - 2~c)~/2]/R) 

x/,0c(1 - tc 2) J X -  11 [(1 + 2~c) ~/2 - (1 - 2~c)1/2]/R) (2.22) 

If tc < 1, then values of Ps, are far from zero only within the ring domain; 
the mean radius of this domain is of the order of to. The radial section 
profiles of the distribution P,t are shown in Fig. 4. 

3. S T A T I S T I C A L  T H E O R Y  F O R  T d ~ T c. 
R A N D O M  P R O C E S S  IN T H E  L O N G - T I M E  A S Y M P T O T I C S  

The situation Td~rc,>v* is more difficult to analyze because one 
should take into account the existence of correlations between two 
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Fig. 2. Typical chaotic attractors for the system described by Eq. (1.2), with ~ .  -= 0. Te point 
distribution on the spiral Ikeda attractor (A) becomes randomlike (B,C)  as ).>>1. The 
parameters are: ( A ) - K = 0 . 6 ,  2 = 5 ;  ( B ) - • = 0 . 2 5 ,  )~=500 (ring domain);  ( C ) - ~ c = 0 . 6 ,  
;. = 500 (disk domain). 
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Fig. 2. (Continued) 

+ + r  + 

*t 

Fig. 3. The rad ia l  sect ion of the s t a t iona ry  p robab i l i ty  d is t r ibu t ion  in the r ing d o m a i n  for 

K = 0.25 (the noiseless case). The line shows the results of the numer ica l  i te ra t ions  f N - ~ f N *  1 
as N-- ,  m [ca lcu la ted  using Eq. (2.16)].  Crosses  represent  the ana logous  dependence  obta ined  
from the results of the numer ica l  i te ra t ions  XN-~ XN+ 1 [see Eq. (1.2)] for ,~ = 500, ~c = 0.25. 
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l0 
The radial section of the stationary probability distributions in the ring domain for 

various values of the Gaussian noise parameter R (~ = 0.1 ). 

fluctuating signals reaching the device X. In this section we suppose that 
the NCES is a Markovian stationary random process. This implies that 
multitime distributions (MTD) of the NCES are given by 

n--1 

P(4,Et,],..., r cO(4o) 1~ (D(4p+I '  4p, [tp+l-tp]) (3.1) 
p=O 

where co(~)=l imt~  ~ o)(4, t/, [ t ] ) ,  and 4o ..... 4, are the NCES amplitudes 
at given times to,..., t , ,  respectively. Now we can write the generalized 
Kolmogorov-Chapman equation for the MTD as 

PN+I((Xs), ~n+t)---- f dYd~ PN((Ys) ,  ~o) 

x (I a(:)(x~-~-F(Y,))c~ G, [~,+~ 
p=0 

-~,3) 

(3.2) 

In Eq. (3.2) we use the short notation defined by 

PN((Xs), ~) = P(Xo[NTd], Xl[NTdq- ~'1] ..... X.[NTd+ %], ~[NTd]) 

(3.3) 
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where X0, X1,..., X, are the signal amplitudes at times NTd, NTd + r~,..., 
NTd+ 27~, respectively, and ~ is the NCES amplitude at a time NTd (here 
and henceforth we assume that 0=270<271< ' "  <27,+~-Td;  it follows 
that NTdTNTd+%).  We also use the notation dA=dAodA1. . .dA ~. 
Using the Fourier transformation rule analogous to (2.2), we obtain 

ON+ 1((Us), ~-2n +1 ) ~--- f dV dO Ox ((V~), s 

n 

x I~ p(Up, Vp)H(Op+ 1, O p -  Up, [27p+1-Zp]) 
p = 0  

(3.4) 
where 

H(O, F, [27])=(27 0 2fdr tl, [27])exp[ iRe(r /F*-~O*)]  (3.5) 

and p(U, V) was defined by Eq. (2.4). The short notation [~N((Us), O) can 
be unfolded in the same way as was done in Eq. (3.3) for the MTD. 

In this paper we consider two models for the fluctuation statistics 
assuming the NCES to be either (a)a  Gaussian random process (GP), or 
(b) a Kubo-Andersen random process (KAP). It should be mentioned that 
the latter, which is also called a generalized random telegraph process, 
is the stepwise constant Markovian process describing random jumps 
between (complex) values ~k (with appearance probability Pk); the jumping 
times are uniformely and independently distributed along the time axis. (17) 
The transition densities and their Fourier transformations are: (a)for the 
GP case 

(DGp(~ , q, [27], R ) =  [~rR(1- ~ ) ] - 1  e x p [ _  1r r/O~lZ/R(1-0~)] (3.6) 

HGp(O , i', [z], R) = 6(2)(/"- Q~/t) exp[ - IOI  2 R(1 - ~ ) / 4 ]  (3.7) 

(b) for the KAP case 

~0KAp(~, '7, [27]) = ~'~a~2~(~ -- ~) + p(~)(1  -- ~,~) (3.8) 

HKAp(o,r, E27])=O~a'2'(r-o)+(~-O,)z(o)a,~,(r) (3.9) 

here 
L 

p ( ~ ) =  S p ~ a ~ ( r 1 6 2  
k = l  

L 

z(O) = ~ pkexp[--iRe(~kQ*)] 
k 1 

~=exp( -27 / r c )  
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The replacement p-->/3 [random phase approximation; see Eqs. (2.5)- 
(2.7)] leads to approximate equations of motion: (a)for the GP case 

[in ] 
ON+~((U~),U~+~)=exp - - ~  ~ (Up+U*)-A((Us),Un+,)  

p = O  

X(gN (lcUseiO') , 2 exp(--rq/Zc)Uq (3.10) 
q = O  

where 

n+l n~l e (~p "r:q)/'~CUp 2 A((Us), U,+ ~)= (R/4)p~=, q=p 

and (b) for the KAP case 

(1 - 2 e  (~-' ~ /" )  (3.11) 

-- O N  flO ) ON+I((U~) , Un+l) =exp ~ (Up+ U * ) -  ((tcUseiO O, 
p = 0  

n + l  

= 1 <k> p- -  <k> 

X Lt l 'k , ,  
?=1 

where flpq=Z~=p Ui and l ~ k l < k 2 < - . .  < k ~ < k ~ , + l = n + 2 .  The upper 
lines in Eqs. (3.10) and (3.12) mean the averaging over all phase angles ~b s, 
s = l , 2  ..... n; { k } - k l , k 2  ..... k,. 

We are also interested in multitime correlation functions (MTCF) of 
the form 

r = O  N 

= (2~)2"+4 (2i)7 ct~-&p ~ q  

x f i  .O~**kr~U)JON((U,),Q) (3.13) 
r = 0  Us=O 

."2=0 

n k where 7 = P + q + 52r=0( r + lr) is the order of the MTCF, and the brackets 
< ' ' "  ) N signify averaging with (3.3). Using Eqs. (3.10)-(3.12), we can obtain 
evolutionary maps for the MTCF. In order to shorten our account, we 
shall designate functions (3.13) as N-moments. It follows from the structure 
of the equations under consideration that every (N+  1)-moment of the 
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order 7 is a linear function of N-moments of the order 7, where 7 --~7. 
Therefore, M T C F  evolutionary maps are linear and finite-~timensional: 

m N +  1 = ~ r  + B (3.14) 

where mN is a vector composed of N-moments  with 7 ~< 7 . . . .  B is a fixed 
vector, and ~r is a square matrix. 

Let us now investigate the long-time asymptotics of random signal 
motion in our circuit. Notice that the total description of the random 
process is provided with the infinite family of multitime correlation 
functions (moments). So it is sufficient to investigate the evolution of these 
functions only. 

It follows from Eqs. (3.10)-(3.12) that any ( N +  1)-moment with fixed 
parameters (7, ~), ~ = P + q, is a linear superposition of N-moments with 
parameters (~,', ~') if either 7' ~< 7 or 7' = 7, ~' ~> ~. As a result, choosing the 
special form of a basis in the M T C F  linear space, we can make the matrix 
~r triangular. To achieve this, one must enumerate the basis elements (i.e., 
the moments  with fixed parameters) in a special manner: if (7i, ~i) are the 
ith-element parameters then i > j means that either 7i > 7j or 7i = 7j, c~i > ~j. 
The diagonal elements of the matrix ~4 (which coincide with its eigen- 
values) are: (a ) for  the GP  case 

f l  ~ "":s+Zsexp[- Ta(p+q)/rc] (3.15) E d ] ( p ,  q(k,, 1,))= ,..x~,z~ 
S ~ 0  

(b) for the KAP case 

n 

[~r ls))= 1~ c~.~ks+t~E6pO6qo+e Vd/~'(1--fpO6qO)] (3.16) 
s = 0  

Every diagonal element is less than unity. After the replacement mN+l,  
m N ~ mst we obtain the "stationary point" equation 

m s t  = ~r  + B (3.17) 

which has the only solution because ~4 is a nondegenerate matrix. To 
prove the stability of this solution, one must consider the linearized 
equation for small deviations 

6 m N +  I = d 5mN (3.18) 

Let d be represented in the normal Jordan form d = TJT 1; here T is a 
nondegenerate matrix, and J is the Jordan matrix. (18) We have 

(~mN = ~ N  6m ~ = (TJT-I)N 6mo = (TjNT -1) 5 m o  (3.19) 
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We have from Eqs. (3.15) and (3.16) that the diagonal elements of a matrix 
J are also less than unity; therefore j N .  0 as N ~  oo (see ref. 18, p. 145). 
Hence, Eq. (3.19) leads to the conclusion ~ m  u - *  0 as N ~  ~ ;  this means 
the asymptotic stability of the "stationary point." 

To complete our technique, we must show how to calculate the 
MTCF with arbitrary time values. It is easy to find that this function can 
be expressed in terms of the MTCF considered above. In view of the fact 
that general expressions are complicated and cumbersome, we write here 
only the two-time function (for the GP case): 

O(V[(N+ k) Ta+ ~], U[NTj], g2[XTd]) 

= exp[ - i( VLk + V*L~)/2] 

2 ~ 2  la,,~ ) x e x p ( - R I V l  {[1--exp(--2Td/ 'cc)](l+i= 1 

+ l - l - e x p ( - 2 r / r c ) ] l G k  ~12}/4) 

x O(KkV{exp(iT)}[NTa+ ~], U[NTa], 

t-2 + VGk_~ {exp( - r/z~) } [NTa] ) (3.20) 
where 

f } Gk = exp(-kTa/zc)  1 + ~ [~c exp(Td/zc)] j exp(i/~fl 
j = l  

k 1 

L = 1 + Z KJ exp(i/~j) 
j - - 1  

and the upper line means averaging over phase angles flj, j = 1,..., k -  1; 7. 
Solving Eq. (3.17), one can obtain every MTCF in analytic form. 

Because the phase coherence is destroyed in the NLE, only the intensity 
correlation functions are of interest. Defining the covariance as 

C('c) = < [X ,+~ I  2 lX,12)st - ( [ X , + ~ [ a ) ~ t  <lX, l~>~t (3.21) 

we have analytic expressions for various noise statistics: (a) for the GP case 

1 ( ~ + ~2(~,/0~)2 2R ~'~ + ~2(~/~)'~ c(~)=l---L--u_l~ 1-~2~ ~ + ~- -U6 j (3.22) 

2 R ~  k.21 
C(kTd+ ~) = ~c2kC(~) + 2. ~s162 ~1~,~ 

1 bC2~l 
1 = o  

2 2 2 k i 
R~g~Izr ~ K2(k l l)[~ 21 ( 3 . 2 3 )  

+ 1 - ~:~4, ~ t~o 
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(b) for the KAP case 

~,, + ~c2(~,/~,~) 
C' ("C)= (f ~ ~4~  ~ ~2-@ )((Q2 >KAP -- (Q)2Ap) (3.24) 

(kv' , 1/@ C(kTa+ r ) =  ~cZkc(z)+ 1 - tr \ ,z"  o (<Q2>KAP -- <Q>KAP) 

(3.25) 

Here Q = I I + ~ I 2 ;  0 < r < T a ;  O=exp(--Td/rc);  O~=exp(--r/z,.); r is a 
random variable; the brackets ( . . . )KAp mean averaging with the one- 
dimensional distribution (for KAP). 

It is interesting to compare the aforementioned results with analogous 
ones for a linear dissipative circuit. Let a linear absorber take the place of 
the NLE; accordingly we have to replace F(X)~FL(X) - -1  +xXe i~ in 
Eq. (1.2). The covariance for the GP statistics is 

C(kT + v)=- R II --hI-2 (I'k + F*) + R211"k[ 2 (3.26) 

where 

r~ - l - ~ l~  1 ~,-1-h*~,J+l-h~,,~o (h*)~-'-~ i3.27) 

and h = • exp(- i~) .  Figure 5 shows the graphs of the normalized covarian- 
ces (3.22)-(3.26). 

4. A P P R O X I M A T E  F O R M U L A S  FOR M A X I M A L  
L Y A P U N O V  E X P O N E N T  

It is well known that the maximal Lyapunov exponent (MLE) charac- 
terizing the exponential divergence rate of initially close trajectories enables 
one to determine the type of system dynamics. If the motion is regular 
(a stable point or a limit cycle) the MLE is negative; a positive MLE 
corresponds to chaotic behavior. 

In this section we present some simple approximate formulas for the 
MLE for the nonlinear system under investigation. Let XN+I= F(XN) [see 
Eq. (1.2)]; the MLE can be obtained as (19) 

L = lira In sup la([~NJ/IN_ 1''" ~111/N)1 (4.1) N~c~ 
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Fig. 5. (a) Covariance of the signal intensities. Crosses and squares correspond to the circuit 
with an NLE and the Gaussian noise statistics (crosses) or the Kubo-Andersen  noise statistics 
(squares); lines are for the circuit with a linear absorber and the Gaussian noise, (A)~ = ~/6, 
( B ) g = ~ / 2 ,  ( C ) ~ = 5 ~ / 6 .  (b) Two-time dependence graph for the intensity correlation 
function (z and zc are normalized on fixed T~). 
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where J///p = Jg(Xp) is the Jacobian matrix calculated at point Xp; a(d)is  
the eigenvalue spectrum of ~r Using Eq. (1.2) (~u -= 0), we determine 

cos ~p --sin 7p) 

~p = ~C \ sin 7p cos 7p / 

(-sin(~Op + 7p)) (cos ~op sin q)p) +2K2k IXpl2k k COS((pp-~ ~p) } (4.2) 

where 7p=2 ]Xpt2k+Oo, and q)p=argXp [the second term in Eq. (4.2) is 
the direct product of two-dimensional ectors]. It is natural to suppose that 
for 2 ~ 1 the principal contribution is given by terms including 2 in the 
maximal power. Keeping only this contribution and substituting expression 
(4.2) into Eq. (4.1), we obtain 

t N L=ln(2~c2k)+lim N -1 k E In IXp[ 2 
p=l 

N, ) 
+ ~ In ]sin(q)p+l--q)p--'/p)t +C 

p=l 
(4.3) 

If we also take into account the relation 

sin((0p +1 - ~0p - ?p) = -IXp +11 1 sin [arg(Xp +1 - 1 ) ] 

and replace in Eq. (4.3) summation along the trajectory by integration with 
the invariant distribution, we have 

f(1 _ ~:)-2 
L=lnOc2k)+(2k-1)O(tc-0.5) 2 dHfst(H)lnOc~f-H) (4.4) 

where 0 ( x ) = 0  for x~<0 and 0 ( x ) = l  for x > 0 ;  f s t= l imN~fu;  see 
Eq. (2.16). Notice that fst(H) (and the integral in the second term) is inde- 
pendent of k and 2; the second term vanishes for ~c < 0.5. The plots of L vs. 
~c for k =  1 are shown in Fig. 6. Corresponding results were obtained 
numerically with the use of formula (4.4) (circles) and from datra 
calculated by iterations of the map (1.2) (~u = 0) (points). The broken line 
corresponds to the simple approximation 

L = ln(~:2) + O ( x -  0 .5) [ (K-  0.5) 6 .60-  1.18](K- 0.5) (4.5) 

and the full line is the graph of ln(~2). 
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Fig. 6. Maximal Lyapunov exponent vs. the dissipation parameter ~. 

5. C O N C L U S I O N  

We have presented a statistical theory describing in the same manner 
the stochasticity caused by either deterministic chaos in a nonlinear system 
or Ordinary fluctuations resulting from the influence of external noise. In 
this paper we have considered a nonlinear circuit with delayed feedback, 
and also the special case of intense phase mixing. The processes under 
investigation may be interpreted as noise amplification (generation) in non- 
linear systems. Our description is based on the Kolmogorov-Chapman 
equations for the multitime distribution functions of the signal amplitude. 
We have worked out a simple method of determining the multitime 
correlation functions of any order. Approximate formulas describing the 
dependence of the maximal Lyapunov exponent on the control parameters 
have been obtained, and are in good agreement with the results of numeri- 
cal calculations. 
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